Ada Runtime Error Generator

Project Report

Date:01/04/2021

Instititid Teicneolaiochta Cheatharlach

L) INSTITUTE of
TECHNOLOGY

CARLOW Add

At the Heart of South Leinster T, Shosted. safe and secure

Student: Derry Brennan

Student number: C00231080

Supervisor: Chris Meudec

Ada Runtime Error Generator | Project Report

C00231080 | Derry Brennan | Page 2

DECLARATION

| hereby declare that this research project titled “Ada runtime error
generator” has been written by me under the supervision of Dr. Christophe
Meudec.

The work has not been presented in any previous research for the award of
bachelor degree to the best of my knowledge.

The work is entirely mine and | accept the sole responsibility for any errors
that might be found in the work, while the references to published materials
have been duly acknowledged.

| have provided a complete table of reference of all works and sources used
in the preparation of this document.

| understand that failure to conform with the Institute’'s regulations
governing plagiarism constitutes a serious offence.

Signature: Derry Brennan Date: 29/04 /2021

Derry Brennan (Student)
C00231080 (Student Number)

The above declaration is confirmed by:

Signature: (Chris Meudec Date: 29/04/2021

Dr. Christophe Meudec (Project Supervisor)

Ada Runtime Error Generator | Project Report

C00231080 | Derry Brennan | Page 3

Table of contents

1. Introduction 5
2. Description of Project 6
3. Conformance to specification 7
4. Learning Outcomes 9
4.1 Ada 9
4.2 Symbolic execution 10
4.3 Flex 11
4.4 Yacc 11
4.5 Prolog 12
4.6 Visual Studio Code 13
4.7 Javascript 13
4.8 Python 15
49C 15
4.10 Mika 16
4.11 Time Management 16
4.12 Presentation Skills 17
4.13 Research Skills 18

4.14 Technical writing 19

Ada Runtime Error Generator | Project Report

C00231080 | Derry Brennan | Page 4

4.15 Collaboration 19
5. Future Developments 21
6. Conclusion 22
7. Acknowledgements 24

8. Bibliography 25

Ada Runtime Error Generator | Project Report

C00231080 | Derry Brennan | Page 5

1. Introduction

This project was aimed at the detection of runtime errors within Ada code
and commenced in October 2020 and ended in April 2021. This Project was
conducted as a fourth year module from the Institute of Technology Carlow
in preparation for a software development degree.

The final report breaks down the project into sections. The project
description first details the overall aim of the project and what was
intended to be produced. It will then examine the conformance to the
specifications that were detailed in the functional specification document
and if there were any features that were not achieved or additional features
added. Finally, it will detail the accumulation of the knowledge gained from
this project in the learning outcomes section and the review and
conclusions of the project in the Project review section.

https://docs.google.com/document/d/1MJBTB04r4G9SmxqB3qXJ6S2omz-dujHOIK1_7hyNz_4/edit?usp=sharing

Ada Runtime Error Generator | Project Report

C00231080 | Derry Brennan | Page 6

2. Description of Project

The main goal of the project was to find the presence of runtime errors
within Ada code and supply the inputs that would cause these errors to
occur back to the developer, along with a description of the error found and
on what line of code it was encountered. This would use a test input
generating software called Mika which already had the functionality of
supplying test inputs for coverage strategies of branch, decisions and
modified condition / decision coverage (MC/DC). The aim of the project
was to add a new coverage condition of “exception coverage” to the tool.

Mika uses symbolic execution and prolog to generate the test inputs for its
desired coverage option supplied. The prolog file is generated from the
source code using a custom Ada language file, ada.y, a Yet Another
Compiler Compiler (yacc) file where the decisions and branches and
exception stages of the code are defined as prolog relationships. Prolog's
intrinsic backtracking ability allows it to follow a path down until it finds an
answer to the supplied query or if it turns out to be false, to go back up a
step and take another path.

The initial starting point of the project was to write additions into the ada.y
file that would build prolog relationship statements for runtime exceptions
where they were possible to be found within the Ada language and to have
the symbolic execution determine if there were variable values which would
make this condition true.

An additional idea for a Visual Studio Code extension was also
incorporated into the project. This would allow a developer to open an Ada
file within Visual Studio Code and insert a special comment onto a
specified line that would have a boolean condition in it, such as X = 5.

Once the comment was in place they could run a command that would call
Mika to provide test inputs for the code that would make this condition be
true at the specified line the comment was entered.

Ada Runtime Error Generator | Project Report

C00231080 | Derry Brennan | Page 7

3. Conformance to specification

The project mostly conformed to the initial specifications in that
implementations of the division by zero and the array index out of bounds
exception checks work within Mika. The division by zero check was a
success and had hopes high for moving on to the more complex
exceptions, but when the array index out of bounds was being implemented
it quickly became clear that the parser was not the ideal place to be
implementing these checks, as it has no typing information and is quite
simplistic.

Furtherance of the project would require a change in direction of
implementing the checks within the symbolic execution where all typing
information is available.

An additional area of the project was introduced where an extension for
Visual Studio Code was to be implemented that would allow for dynamic
code querying. Two functional commands are provided by the extension to
accomplish this. One simple command: “Mika Ada Annotations” inserts a
boilerplate comment on the highlighted line of code, allowing the developer
to insert a boolean condition they would like to generate variable values to
fulfil.

The next command: “Mika generate test inputs” makes a copy of the
source code the comment was inserted in and programmatically inserts a
new procedure into which the provided boolean condition is entered as an
argument. Next the extension calls Mika on this file with the -Tquery flag
and the test inputs if any are present are returned in a json file. The
extension then parses this json file and displays the results in a tab beside
the source code.

The overall conformance to the specification was not full as | was unable to
provide support for all the runtime errors that were hoped to be met due to

Ada Runtime Error Generator | Project Report
C00231080 | Derry Brennan | Page 8

the unforeseen typing problem encountered while implementing the array
out of bounds exception checks.

However, the overall value of the project was then supplemented with the
Visual Studio Code Extension. This is a valuable addition, being able to
provide real values to the developer to meet the conditions they want to
test at any stage of their code from within Visual Studio Code.

Ada Runtime Error Generator | Project Report

C00231080 | Derry Brennan | Page 9

4. Learning Outcomes

Throughout the project | was exposed to numerous learning outcomes,
both technological and personal. Over this section | will detail what my
personal experience was and how it helped me to grow as a developer over
the course of the year.

4.1 Ada

Before commencement on this project | had not even heard of Ada as a
language, so it was necessary to familiarise myself with it. It is a somewhat
niche language, but it is very good at what it does right, being safety and
validation and verification of the code produced.

Ada’s natural language approach to the language was pleasant, | prefer the
usage of English words where possible over their symbolic counterparts
e.g. ‘and’ vs ‘&&’ couples with the absence of curly brackets made the
produced code both look and read well. This is something that over the
years has stood out to me; you may only write a program once, but you
come back to it numerous times to either enhance it or just to reread it and
having the code be more easily readable and understandable is priceless.

One of the most notable features for me was also the ability to create
custom types. If you want an integer that goes from 0-100 and nothing else
is allowed you can create your type, call it what you want and set the range.
Now anytime you use this type Ada will enforce your type rules on it as it
would any standard type. This can be both a blessing and a curse. With
everything in Ada being a type it was a bit frustrating at the start to get
used to, but once | realized its full potential of steering the developer
towards a more stable program overall | was sold on this feature.

Working with Ada has helped me to learn how its techniques and features
are applied to solve problems faced by aviation and military companies. By
enforcing strict rules from the inception of a project you can prevent or

Ada Runtime Error Generator | Project Report
C00231080 | Derry Brennan | Page 10

drastically reduce the possibility of drastic errors. This will help me
immensely in progressing through my career.

4.2 Symbolic execution

Symbolic execution was also unknown to me prior to this project. Its
practicality in application has only recently become more prominent with
the different solvers used in conjunction with it having achieved sufficient
power to make the application of this technique more practical.

Reducing the variables down to a symbolic term and then producing
boolean equations that match the source codes branches and conditions,
the solver can then, given the constraints of those variables, provide an
answer as to whether this boolean condition could ever be true and provide
the values that it found to make it true. Each branch or condition can be
executed independently and once they reach an end point a solver can then
compute a concrete value for the variables, if one is possible. This can be
used to navigate very complex code following certain paths down to the
desired point allowing for much faster traversal through code than coming
up with inputs that would get you to the same area manually.

It is not a one size fits all approach. As the size of the code under test
increases so do the possible paths that it will need to track, this ‘path
explosion’ is made even greater once loops are taken into account. But
even with its limitations symbolic execution and its ability to find values
that will progress through code to certain sections is very valuable in the
validation and verification of code. It takes a great deal of time to manually
calculate values to do the same for a developer and knowing that this is a
technique that can be put into practise is a big takeaway from the project.

Ada Runtime Error Generator | Project Report

C00231080 | Derry Brennan | Page 11
4.3 Flex

My understanding of the lexical analysis step was part of my research and
although | had some knowledge of this prior to the project, getting to look
inside and interact with the ada.l file was fascinating. Seeing how the
language lexemes are broken down into the tokens was very instructive.
The number of tokens for such a complex language as Ada was also fewer
than | would have thought with the whole ada.l file coming in just over 850
lines of code.

With the greater understanding of lexical analysis, | now feel able to write
up the language patterns for something customised. The ability to write
your own language is both empowering and practical.

4.4 Yacc

The Yet Another Compiler Compiler (Yacc), or in the case of this project the
updated bison version, was where most of the practical work of the project
was proposed to take place. This file holds the information on the
language's grammar, uses the tokens produced by the lexical analyser, and
also contains C code for the actions to be to be taken at certain stages. In
the project, this was the automated writing of a prolog file of the source
code provided.

The ada.y file in the project was incredibly intimidating, coming in at over
5000 lines of code and a long portion of my time in the project was aimed
at reading through it and gaining a comprehension of what was going on in
order to better understand where to apply the checks for the runtime errors
that were being looked for. In hindsight, the length and complexity of this
file should have not been the mental hurdle for me that initially it was due to
the fact that the file structure does follow a logical order and regardless of
its length is just another file. Being able to make additions in this file and
see their outputs start to produce results was a good feeling.

Ada Runtime Error Generator | Project Report
C00231080 | Derry Brennan | Page 12

Working with both Flex and Yacc helped me to learn how to manage myself
when confronted with large daunting files that seem initially to be very
complex, this will help me in future when working within other large scale
projects that also contain such files.

4.5 Prolog

As part of the research for the project, before | knew exactly what area |
would be working on | spent some time looking into prolog. | knew that
Mika used prolog in conjunction with the symbolic execution to produce the
test input values and | figured it would be a good Idea to familiarise myself
with its workings.

Prolog’s logical programming was intriguing. The idea of relationships and
facts making up the language and thus allowing you to explain what you
would like to accomplish and it telling you how to achieve that comes
counter to regular programming where we provide the steps to achieve a
desired goal.

Prolog also provides a unique backtracking ability that makes its queries
extremely useful. If it follows a branch of execution to a point where the
query cannot find an answer, but all query branches have not been taken,
the variables binding since the last branch taken are discarded and it
returns back to that choice and follows a different branch. This can be seen
as somewhat similar to a depth first search.

My limited exposure to this language has left me craving more and
hopefully this is where the ultimate answer to the project's proposed goal
of finding runtime errors in code can be accomplished. Prolog’s innate
backtracking ability allows it to quickly do tasks that would otherwise be
very complex to do, this feature coupled with its logical programming is
something that when it can be applied is going to be on my mind for other
large projects.

Ada Runtime Error Generator | Project Report

C00231080 | Derry Brennan | Page 13
4.6 Visual Studio Code

A proposed addition to the project was to add an extension to Visual Studio
Code for Mika that would allow code to be queried in the text editor, such
as 'find me test inputs that make this condition true at this line of code'.

Visual Studio Code is my preferred text editor already and as a user of a
number of useful and different extensions already | was very happy at the
idea of also creating our own.

This brought up the difference in experiences between being a user of a
product and being a developer within said product. On starting the research
into how one would commence development of the extension, | learned
quite a lot more about Visual Studio Code than | had previously known.

Most interestingly of which, for me personally was that Visual Studio Code
is made with electron [1] which is an application framework made using
Javascript, HTML and CSS. Maybe naively, | had thought it was made using
C# being a Microsoft product, but the flexibility and customization options
on this framework are amazing.

Both working on and with Visual studio code and managing the project
from within it has made the management of a large scale project like this
much easier. Coupled with Git for version control made keeping track of the
files and changes being carried out over the course of the project much
easier and every experience with both is a crucial learning experience for
me as | know from my work experience how important these are in the
industry.

4.7 Javascript

After the decision to add an extension to Visual Studio Code was made, |
looked into how they were made. Here was a choice between Typescript or
Javascript for the language to write in. Since | had some experience with

Ada Runtime Error Generator | Project Report
C00231080 | Derry Brennan | Page 14

Javascript for my internship | decided this would be a good choice. In this
project | worked with node.js, the package manager and | ended up using a
few packages from within this.

This filesystem package fs was great for making and removing directories
and copying files between them. The vscode package has all the
commands for interacting directly with Visual Studio Code such as
inserting text into the current open file.

The glob package was used for pattern matching. It uses patterns to match
the desired file. | used it to get the folder name of a folder with a generated
name based on date/time that would have been very difficult to determine
otherwise.

And lastly | used the child process package, without which | couldn’t
imagine how to make sure Mika had finished running its reports before
looking for the output from Mika.

Having all these packages at my disposal during the project was fantastic.
These packages give you a way of accomplishing difficult tasks without
having to reinvent the wheel. If a tool is available it is better to use that tool
than to spend much more time constructing your own tool for the same
purpose. | have to say that javascript has gotten a bit of a bad name for
itself among programmers, but | found the process very enjoyable. | can
see why typescript was needed too though; as was mentioned earlier in the
Ada section having types is very helpful if a bit frustrating at the start.

Having a shell to also debug in was very helpful and it is something that |
will miss if going back to Ada to program. In future projects where a shell is
available for a language | will be conducting my prototyping of algorithms
here. This gives me a greater understanding of how all the function calls
work and being able to see them in action before applying them to the code
base of a project. Being able to quickly test out an idea in the shell and

Ada Runtime Error Generator | Project Report
C00231080 | Derry Brennan | Page 15

make small adjustments to it before putting it into the source code is really
something all languages that can do this should do.

4.8 Python

During the project a step that was needed was to try to find real world Ada
code to test the runtime error generator on. There were a few limitations on
Mika, one being that it cannot handle code with external libraries. Trying to
browse GitHub for code that matched our requirements proved fruitless
and so the decision was made to write a web scraper to do the searching
for me. | chose Python here because | had heard it had a very powerful
library called ‘beautiful soup’ [2]. Between Python and beautiful soup the
process was much easier than | imagined. | scraped the webpage ethically
too leaving a 3 second gap between actions so as not to over tax the
website.

Unfortunately the web scraper did not produce any usable code to test
upon, but the process of making it was very beneficial giving me greater
knowledge of HTML and Ada also. Every step even if unsuccessful is still a
step forward. Knowing how to perform such a step as web scraping
enables me to reach into my quiver of knowledge and draw upon this in the
future whenever it is applicable.

My experience here with python being an extremely popular language and
particularly its application in data science will be very beneficial to me as it
is an area of further study that appeals to me.

49C

Within the Yacc file Ada.y file C is used to provide instructions once a
certain token is found. | had experience with C++ in third year but never
dealt with C until now. As the C sections in the Ada.y file were dealing with
constructing strings to then write into the foo.pl file to generate prolog from

Ada Runtime Error Generator | Project Report
C00231080 | Derry Brennan | Page 16

the source code, the allocation of memory for each string was needed.
Using malloc you needed to basically count the characters that you would
be using in the string and assign the correct value to the allocated. This low
level management of a program was foreign to me, but it certainly does
give the developer far greater control over every step of the process.

4.10 Mika

Mika, the Ada test input generator developed by Dr. Chris Meudec, was at
the heart of the project and to fully understand and progress with the
project | had to thoroughly familiarise myself with this software. There is a
graphical user interface (GUI) for Mika and also a command line interface
(CLI); both provide the same features but for development the CLI was
mostly used.

Through the documentation available, a user guide and a developer's guide,
| was able to get everything up and running locally. The process was not
without a few hiccups along the way. For example, building the parser
within Visual Studio proved to be quite complicated. But having followed
the documents and working with the software | feel that | gained a good
understanding of the inner workings of this software. It provides great
insight into code and is a huge time saver for developers.

4.11 Time Management

Time management has never been a strong suit of mine. Being on time for
appointments or meets is fine, but dividing my time up into productive
sections has always been very difficult for me. Especially with studying
from home during coronavirus, staying productive has only gotten harder.

Over the year | did start to implement timetabled sections of time for
myself to tackle the project exclusively and this proved to be very focusing.
If I had had this ability from the start of the year, | feel it would have

Ada Runtime Error Generator | Project Report
C00231080 | Derry Brennan | Page 17

reduced a lot of the stress felt as the deadlines were approaching. | allotted
certain blocks of time to just project work outside of the allotted hours
during college. With 3 hours on each Sunday, a further 2 hours on each
Tuesday and 3 more hours on Fridays to make sure | maximise my time
well.

Now knowing that in advance the importance of spreading the workload
out over the full length of a project | feel will make me generally a more
productive student/worker. This is especially true of a research project
where there are endless possibilities of reading and expanding your
knowledge. Taking my learning from this year into future endeavours.

4.12 Presentation Skills

| always enjoy doing presentations, even if the nerves do get to me a little. |
feel they are a great way of demonstrating what you have been doing and
an opportunity for you to show off your work in the best light, through your
own words.

The two presentations this year on the project were very difficult, but
rewarding. Trying to condense down such a project into just five minutes
and have it make sense and still be engaging and not lose people in
technicalities was the goal and | feel | accomplished this well.

Getting direct questions from the group also gives an opportunity to further
demonstrate your knowledge on topics not necessarily prepared for. | feel
that with each presentation | am getting better at public speaking and being
able to get across complex topics in an interesting and engaging manner.
Getting across complex topics in a clear and concise manner is not always
easy as people's attention may drift if not engaged quickly. Being able to
pick out the key ideas you want to deliver and engage people with those to
get them on board and invested in your presentation is key. As | feel the
topic of this project is quite complex to explain to people not fully familiar

Ada Runtime Error Generator | Project Report
C00231080 | Derry Brennan | Page 18

with the topic, presenting this topic this year has been an invaluable
experience. It prepared me well to make future presentations on equally
complex topics and bring my experience for this year to them also.

4.13 Research Skills

With this project being primarily a research project, it was imperative that
research was the focus from commencement. | read quite a lot to
familiarise myself with the topic and task at hand, but | do feel that my
research skills at the start of the project were lacking. With everything that |
was reading and learning, | was not necessarily properly documenting
everything that | was doing. Of course, the point of the research project is
not to just familiarise myself with the topic but to produce documents that
will do the same for others in the future.

The project put the focus on the experience of trying to write good
literature, reading others works in the area to understand the topics and
procedures conducted. This enabled me to not retread old ground and
spend time doing what someone else has already done.

Knowing this now | feel that if | was to engage in future research, | would be
better equipped to produce better results overall. Additionally the
differences between a research project and a regular project where the
goals are clearly laid out from the start, something that was difficult for me
to understand over the course of the project.

This understanding came late to me within this project after a colleague of
mine reminded me about the complexity of the task at hand compared to
the construction of an app. They are both beneficial but are hardly
comparable. If | had gotten this understanding cemented in my mind from
the beginning it would have been a much less stressful year. In future | will
spend more time working at the task at hand and less time worrying about

Ada Runtime Error Generator | Project Report
C00231080 | Derry Brennan | Page 19

what has to be done. This is a useful skill to bring forward in life and not
just in software development.

4.14 Technical writing

From an academic perspective, technical writing may be my weakest area.
Many times writer's block has struck, and the direction of some documents
have felt weak and not well structured. | have used technical templates to
help add initial structure to my documents and provide a logical flow to the
writing. | have read some writing articles to try and improve myself in this
area and also asked for help from people who are more experienced in this
area to read over my documents and provide me feedback on improving.

| do feel that the experience has improved my skills, but there is still a large
amount of room for improvement in this area. I'm sure all that it will take is
more practice and as a result | am considering a summer course in
technical writing.

4.15 Collaboration

Collaborating with my tutor on this project was very enjoyable; seeing how
certain aspects were approached gave me ideas to take onboard myself.
One such example was a work diary keeping track of whatever you are
working on each day. | found it is a very good idea to remind yourself about
important discoveries and as a form of documentation that you can later
use while writing the more formal documents.

Doing the documents online in Google Drive, while not having the same
presentation of a latex document certainly did allow for immediate and
useful feedback between my tutor and myself on topics, where side
discussions in the comments gave greater understanding of what was
being written about.

Ada Runtime Error Generator | Project Report
C00231080 | Derry Brennan | Page 20

Also collaborating with my fellow colleagues was very beneficial in talking
out a tricky area of research or tackling a complex area of coding. A
problem shared is a problem halved. After being stuck on an area of the
extension where terminal commands needed to be run sequentially before
the program progressed, | got in a call with a colleague and between us
talking it through and exploring options together the problem was solved
very quickly. Alternatively | have also helped provide support to my fellow
colleagues on areas that caused them to get stuck. Oftentimes you just
need fresh eyes on a problem or even to simply explain the problem out
loud and the answer will become apparent.

| do feel | work well with others. Having worked on a number of group
projects over the course of this degree and also being part of a production
team while on work experience. | do feel that | am most productive when
working closely with others and enjoy having the company too. Although |
think in this project | was slightly embarrassed to share and ask for help
from my tutor on areas | didn't fully comprehend. It may have been that
talking to fellow students who are in a similar situation of learning to me
seemed more manageable than admitting my shortcomings to an expert
felt difficult to broach. My communication could have been better overall,
with more back and forth communications about all stages of the project
rather than just waiting until the weekly meeting to discuss what had been
done. | will take this as a major learning outcome from this project. In the
future | will not be as self conscious about my own lack of knowledge in an
area and bring up my problems with those with the skills to direct me in the
proper direction. Learning is difficult enough without letting a fragile ego
hinder it further.

Ada Runtime Error Generator | Project Report

C00231080 | Derry Brennan | Page 21

5. Future Developments

Over the course of the project | have developed an understanding of the
techniques involved applying this to find real world solutions to the problem
of finding runtime errors in code.

With that in mind | feel that given a few more months to work within the
symbolic executor and apply the necessary checks there instead of within
the parser as was the initial goal that more substantial progress could be
made than the division by zero and the array index out of bounds.

Also there is the possibility of applying this same technique to other more
widespread languages such as C, this would require a building from the
ground up of the necessary systems and files necessary, but the underlying
principle would be the same.

Being able to branch out into a more widespread language would also
provide an abundance of existing code bases that could be used for testing
purposes, which unfortunately were very hard to find for Ada over the
course of the project.

There is definitely an application of this research and it will be very
interesting to see it progressed to a fully satisfying conclusion.

Ada Runtime Error Generator | Project Report

C00231080 | Derry Brennan | Page 22

6. Conclusion

| found this project to be very challenging. The subject matter is complex
and there were not a lot of areas for me to find direction in my research
online to provide me with a concrete answer as to how to progress or what
the best option was as to how to tackle the project. Even similar projects or
products that are aimed at doing something similar for any language are
few and far between.

Also comparing my project with those of my peers who were producing an
application or a website, tangible things, | sometimes felt disheartened with
how little coding | was producing for my project. As the year progressed
this only grew, but in talking with numerous people on the topic this seems
to be the nature of a research project. | do feel | would like to have more to
stand over at the end of the year to call my own, but | have still gained a lot
of knowledge from this project that will stand me well in the future.

It has been an overall positive experience. It did come with its share of
stress and anxiety, but this is the nature of extended projects with unknown
outcomes. If | were to start the project again, | would approach it differently
from a technical perspective, knowing the limitations of the approach
taken this time around. | would also approach it differently from a mental
standpoint and not get as down about my output and just focus on the task
at hand.

Throughout the project | tried to approach it in an Agile approach as much
as possible, there was some up front documentation necessary that didn't
quite fit with how | had learned about Agile in college and my own
experience in the workplace. Enhancing the collaborative aspects of the
project and adding value to it where necessary with a shift in direction to
the extension. Having the flexibility to work with your findings from each
iteration was invaluable and the benefits of Agile are readily apparent to me
after my experiences with it.

Ada Runtime Error Generator | Project Report
C00231080 | Derry Brennan | Page 23

Working to add value to a large scale project such as the Mika test input
generation software was also a very important step. Being able to
familiarise myself with code written by someone else and add meaningful
additions to it that provide real value is very rewarding. Coming from my
own work place experience it is also going to account for a majority of work
conducted in the workplace, there is far more building upon existing code
bases than the creation of entirely new ones. Being able to read and
understand the flow of code and what it is doing is a great skill to bring
forward to future employment or further studies.

Also the ability to apply coding techniques to solve real world problems,
such as the application of the dynamic code querying and the search for
runtime errors in code are skills that are very empowering to have. Knowing
that no matter the complexity of the problem, with the correct application
of what | have learned through my course, almost any problem has a
reachable solution. This is something that not everyone experiences and |
am thankful that | have this knowledge with me as | move forward to
whatever the next step of my journey.

Ada Runtime Error Generator | Project Report

C00231080 | Derry Brennan | Page 24

7. Acknowledgements

A big thank you to all those that helped throughout this project and
provided great ideas. And of course to my supervisor, Dr. Chris Meudec,
who is also the author of the Mika software.

| would also like to thank all of the Institute of Technology staff and faculty
for providing a very enjoyable and enlightening course in software
development. Coming back as a mature student was never an issue and |
have learned a great deal in my four years here.

Ada Runtime Error Generator | Project Report

C00231080 | Derry Brennan | Page 25
8. Bibliography

[1] Foundation, O., 2021. Electron | Build cross-platform desktop apps with JavaScript, HTML, and CSS..
[online] Electronjs.org. Available at: <https://www.electronjs.org/> [Accessed 15 April 2021].

[2] Richardson, L., 2020. Beautiful Soup Documentation — Beautiful Soup 4.9.0 documentation. [online]
Crummy.com. Available at: <https://www.crummy.com/software/BeautifulSoup/bs4/doc/> [Accessed 18
April 2021].

[3] Software BV, T., 2021. index | TIOBE - The Software Quality Company. [online] Tiobe.com. Available
at: <https://www.tiobe.com/tiobe-index/> [Accessed 25 April 2021].

https://www.electronjs.org/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.tiobe.com/tiobe-index/

